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ABSTRACT

The process of implementing a damage detection strategy for aerospace, civil and
mechanical engineering systems is often referred to as structural health monitoring.
Vibration-based damage detection is a tool that is receiving considerable attention
from the research community for such monitoring.  Recent research has recognized
that the process of vibration-based structural health monitoring is fundamentally
one of statistical pattern recognition and this paradigm is described in detail.  This
process is composed of four portions: 1.) Operational evaluation; 2.) Data
acquisition and cleansing; 3.) Feature selection and data compression, and 4.)
Statistical model development. A general discussion of each portion of the process
is presented.  In addition, issues associated with each portion of the process are
identified and briefly discussed.

INTRODUCTION

In the most general terms damage can be defined as changes introduced into a
system that adversely effect its current or future performance.  Implicit in this
definition is the concept that damage is not meaningful without a comparison
between two different states of the system, one of which is assumed to represent the
initial, and often undamaged, state. This discussion is focused on the study of
damage identification in structural and mechanical systems.  Therefore, the
definition of damage will be limited to changes to the material and/or geometric
properties of these systems, including changes to the boundary conditions and
system connectivity, which adversely effect the current or future performance of
that system.
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The basic premise of vibration-based damage detection is that damage will
significantly alter the stiffness, mass or energy dissipation properties of a system,
which, in turn, alter the measured dynamic response of that system.  Although the
basis for vibration-based damage detection appears intuitive, its actual application
poses many significant technical challenges.  The most fundamental challenge is the
fact that damage is typically a local phenomenon and may not significantly
influence the lower-frequency global response of structures that is normally
measured during vibration tests.  Another fundamental challenge is that in many
situations vibration-based damage detection must be performed in an unsupervised
learning mode.  Here, the term unsupervised learning implies that data from
damaged systems are not available.  These challenges are supplemented by many
practical issues associated with making accurate and repeatable vibration
measurements at a limited number of locations on complex structures often
operating in adverse environments.  Recent research has begun to recognize that the
vibration-based damage detection problem is fundamentally one of statistical
pattern recognition and this paradigm is described in detail.

VIBRATION-BASED DAMAGE DETECTION AND STRUCTURAL
HEALTH MONITORING

The process of implementing a damage detection strategy is referred to as
structural health monitoring.  This process involves the definition of potential
damage scenarios for the system, the observation of the system over a period of
time using periodically spaced measurements, the extraction of features from these
measurements, and the analysis of these features to determine the current state of
health of the system.  The output of this process is periodically updated information
regarding the ability of the system to continue to perform its desired function in
light of the inevitable aging and degradation resulting from the operational
environments. Figure 1 shows a chart summarizing the structural health-monitoring
process.  The topics summarized in this figure are discussed below.

Operational Evaluation

Operational evaluation answers three questions in the implementation of a
structural health monitoring system:
1.) How is damage defined for the system being investigated and, for multiple

damage possibilities, which are of the most concern?
2.) What are the conditions, both operational and environmental, under which the

system to be monitored functions?
3.) What are the limitations on acquiring data in the operational environment?

Operational evaluation begins to set the limitations on what will be monitored
and how the monitoring will be accomplished.  This evaluation starts to tailor the
health monitoring process to features that are unique to the system being monitored
and tries to take advantage of unique features of the postulated damage that is to be
detected.
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Data Acquisition and Cleansing

The data acquisition portion of the structural health monitoring process involves
selecting the types of sensors to be used, selecting the location where the sensors
should be placed, determining the number of sensors to be used, and defining the
data acquisition/storage/transmittal hardware. This process is application specific.
Economic considerations play a major role in these decisions.  Another
consideration is how often the data should be collected.  In some cases it is
adequate to collect data immediately before and at periodic intervals after a severe
event.  However, if fatigue crack growth is the failure mode of concern, it is
necessary to collect data almost continuously at relatively short time intervals.

Because data can be measured under varying conditions, the ability to normalize
the data becomes very important to the damage detection process.  One of the most
common procedures is to normalize the measured responses by the measured
inputs.  When environmental or operating condition variability is an issue, the need
can arise to normalize the data in some temporal fashion to facilitate the comparison
of data measured at similar times of an environmental or operational cycle.  Sources
of variability in the data acquisition process and with the system being monitored
need to be identified and minimized to the extent possible.  In general, all sources of
variability cannot be eliminated.  Therefore, it is necessary to make the appropriate
measurements such that these sources can be statistically quantified.

Data cleansing is the process of selectively choosing data to accept for, or reject
from, the feature selection process.  The data cleansing process is usually based on
knowledge gained by individuals directly involved with the data acquisition.
Finally, it is noted that the data acquisition and cleansing portion of a structural
health-monitoring process should not be static.  Insight gained from the feature
selection process and the statistical model development process provides
information regarding changes that can improve the data acquisition process.

Feature Selection

The study of data features used to distinguish the damaged structures from
undamaged ones receives considerable attention in the technical literature.  Inherent
in the feature selection process is the condensation of the data. The operational
implementation and diagnostic measurement technologies needed to perform
structural health monitoring typically produce a large amount of data.
Condensation of the data is advantageous and necessary, particularly if comparisons
of many data sets over the lifetime of the structure are envisioned.  Also, because
data may be acquired from a structure over an extended period of time and in an
operational environment, robust data reduction techniques must retain sensitivity of
the chosen features to the structural changes of interest in the presence of
environmental noise.

The best features for damage detection are typically application specific.
Numerous features are often identified for a structure and assembled into a feature
vector.  In general, a low dimensional feature vector is desirable.  It is also desirable
to obtain many samples of the feature vectors for the statistical model building
portion of the study.  There are no restrictions on the types or combinations of data
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(group classification)
(identification of outliers)

Is it damaged or undamaged?

Incorrect diagnosis of damage

(group classification)
(regression analysis)

Where is the damage located?

Remaining useful life of the system

A. Data available from undamaged and damaged system
B. Data available only from undamaged system

4. STATISTICAL MODEL DEVELOPMENT

Sources of Variability
Basis for Feature Selection
A. Numerical Analysis
B. Past Experience
C. Component Testing

Feedback from Model Development A. Linear vs Nonlinear
B. Purely Experimental or

Analytical/Experimental

Physical Models for Feature

3. FEATURE SELECTION
A. What features of the data are best for damage

detection
B. Statistical distribution of features
C. Data Condensation

Data Normalization Procedures

Feedback from Model Development

A. Level of input
B. Temporal

Sources of Variability
A. Changing environmental/testing/data

reduction conditions
B. Unit-to-Unit

Feedback from Feature Selection

2. DATA ACQUISITION AND CLEANSING
A. Define data to be acquired
B. Define data to be used (or not used)

in the feature selection process

IMPLEMENTATION OF STRUCTURAL HEALTH
MONITORING

1. OPERATIONAL EVALUATION
A. Define system specific damage
B. Operational Evaluation
C. Constraints on data acquisition

Types and Amount of Data to be Acquired?
Where should the sensors be placed?

Define the Data Acquisition, Storage and
Transmittal System

How Often Should Data be Acquired
A. Only after extreme events
B. Periodic intervals
C. Continuous

(regression analysis)
(group classification)

What type of damage is it?What is the extent of damage?

(group classification)
(regression analysis)

False-negative results
False-positive results

Fig. 1. Flow chart for implementing a structural health monitoring program.
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contained in the feature vector. Common features used in vibration-based damage
detection studies are briefly summarized below [1-3].

BASIC MODAL PROPERTIES

The most common features that are used in damage detection, and that represent
a significant amount of data condensation from the actual measured quantities, are
resonant frequencies and mode-shape vectors.  These features are identified from
measured response time-histories, most often absolute acceleration, or spectra of
these time-histories. Often these spectra are normalized by spectra of the measured
force input to form frequency response functions.

The amount of literature that uses resonant frequency shifts as a data feature for
damage detection is large. In general, changes in frequencies cannot provide spatial
information about damage. For applications to large civil engineering structures the
low sensitivity of frequency shifts to damage requires either very precise
measurements of frequency change or large levels of damage. An exception occurs
at higher modal frequencies, where the modes are associated with local responses.
However, the practical limitations involved with the excitation and identification of
frequencies associated with these local modes, caused in part by high modal density
and low participation factors, can make their identification difficult.

Methods that use mode shape vectors as a feature generally analyze differences
between the measured modal vectors before and after damage.  Mode shape vectors
are spatially distributed quantities; therefore, they provide information that can be
used to locate damage.  However, a large number of measurement locations can be
required to accurately characterize mode shape vectors and to provide sufficient
resolution for determining the damage location.  An alternative to using mode
shapes to obtain spatially distributed features sensitive to damage is to use mode
shape derivatives, such as curvature. A comparison of the relative statistical
uncertainty associated with estimates of mode shape curvature, mode shape vectors
and resonant frequencies showed that the largest variability is associated with
estimates of mode shape curvature followed by estimates of the mode shape vector.
Resonant frequencies could be estimated with least uncertainty [4].

DYNAMICALLY MEASURED FLEXIBILITY

Changes in the dynamically measured flexibility matrix indices have also been
used as damage sensitive features. The dynamically measured flexibility matrix is
estimated from the mass-normalized measured mode shapes and measured
eigenvalue matrix (diagonal matrix of squared modal frequencies).  The formulation
of the flexibility matrix is approximate because in most cases all of the structure’s
modes are not measured. Typically, damage is detected using flexibility matrices by
comparing the flexibility matrix indices computed using the modes of the damaged
structure to the flexibility matrix indices computed using the modes of the
undamaged structure.
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UPDATING STRUCTURAL MODEL PARAMETERS

Another class of damage identification methods is based on features related to
changes in mass, stiffness and damping matrix indices that have been correlated
with measured dynamic properties of the undamaged and damaged structures.
These methods solve for the updated matrices by forming a constrained
optimization problem based on the structural equations of motion, the nominal
model, and the experimentally identified modal properties [5].  Comparisons of the
matrix indices that have been correlated with modal properties identified from the
damaged structure to the original correlated matrix indices provide an indication of
damage that can be used to quantify the location and extent of damage.

TIME-HISTORY AND SPECTRAL PATTERN METHODS

Approaches that examine changes in the features derived directly from
measured time histories or their corresponding spectra have been used extensively
by the rotating machinery industry.  There exist numerous detailed charts of
anticipated characteristic faults of a variety of machines and machine elements and
corresponding features in the measured time histories or spectra [6, 7].  These
features have been widely used to successfully detect the presence, location and
type of fault, and the degree of damage.

Qualitative features include, for example, the presence of peaks in acceleration
spectra at certain multiples of shaft rotational frequency and their growth or change
with time.  The important qualitative features are quite distinct to the type of
machine element, the specific fault, and in some cases to the level of damage.
Quantitative features fall into the following categories: time-domain methods,
transformed-domain methods, and time-frequency methods.  Included in
transformed-domain methods are the well-known frequency-domain methods as
well as the cepstrum (the inverse Fourier transform of the logarithm of the Fourier
spectra magnitude squared) techniques.  Briefly, frequency domain methods
characterize features in machine vibrations over a given time window.  Time
domain and time-frequency methods have application to non-stationary faults.

TIME DOMAIN METHODS

These methods have particular application to roller bearings because these
machine elements typically fail by localized defects caused by fatigue cracking and
the associated removal of a piece of material on one of the bearing contact surfaces.
Examples of these features include peak amplitude, rms amplitude, crest factor
analysis, kurtosis analysis, and shock pulse counting.

FREQUENCY DOMAIN METHODS

Approaches applied to roller bearings include Fourier spectra of synchronized-
averaged time histories, cepstrum analysis, sum and difference frequency analysis,
the high frequency resonance technique, and short-time signal processing.
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Quantitative evaluation gear faults has been accomplished using cepstrum peaks as
a harmonic indicator. Other cepstral approaches for spectral-based fault detection
have been applied to helicopter gearboxes.

TIME-FREQUENCY METHODS

These methods have their application in the investigation of rotating machinery
faults exhibiting non-stationary vibration effects.  Non-stationary effects are
associated with machinery in which the dynamic response differs in the various
phases associated with a machine cycle.  Examples include reciprocating machines,
localized faults in gears, and cam mechanisms.  The wavelet transform has been
applied to fault detection and diagnosis of cam mechanisms in and to a helicopter
gearbox. A comparative study of various quantitative features that fall into the time-
domain and frequency-domain categories is presented in [8].

NONLINEAR METHODS

Identification of the basic modal properties, mode shape curvature changes and
dynamic flexibility are based on the assumption that a linear model represents the
structural response before and after damage.  However, in many cases the damage
will cause the structure to exhibit nonlinear response. The specific features that
indicate a system is responding in a nonlinear manner vary widely. For an extreme
event such as an earthquake, the normalized Arias intensity provides an estimate of
the structure’s kinetic energy as a function of time and has been successfully used
to identify the onset of nonlinear building response subjected to damaging
excitations [9].  Deviations from a Gaussian probability distribution function of
acceleration response amplitudes for a system subjected to a Gaussian input have
been used successfully to identify that loose parts are present in a system.
Temporal variation in resonant frequencies identified using canonical variate
analysis is another method to identify the onset of damage [10].  Because all
systems exhibit some degree of nonlinearity, it is a challenge to establish a
threshold for which changes in the nonlinear response features are indicative of
damage. Note that the previously discussed features based on time-history and
spectral pattern changes are often the result of nonlinear response caused by the
damage.

Statistical Model Development

The portion of the structural health monitoring process that has received the
least attention in the technical literature is the development of statistical models to
enhance the damage detection.  Almost none of the hundreds of studies summarized
in [1, 2] make use of any statistical methods to assess if the changes in the selected
features used to identify damaged systems are statistically significant. However,
there are many reported studies for rotating machinery damage detection
applications where statistical models have been used to enhance the damage
detection process.
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Statistical model development is concerned with the implementation of the
algorithms that operate on the extracted features to quantify the damage state of the
structure. The algorithms used in statistical model development usually fall into
three categories.  When data are available from both the undamaged and damaged
structure, the statistical pattern recognition algorithms fall into the general
classification referred to as supervised learning.  Group classification and
regression analysis are general classes of algorithms for supervised learning.
Unsupervised learning refers to algorithms that are applied to data not containing
examples from the damaged structure.

The damage state of a system can be described as a five-step process along the
lines of the process discussed in [11] to answers the following questions: 1. Is there
damage in the system (existence)?; 2. Where is the damage in the system
(location)?; 3. What kind of damage is present (type)?; 4. How severe is the damage
(extent)?; and 5. How much useful life remains (prediction)?  Answers to these
questions in the order presented represents increasing knowledge of the damage
state.  The statistical models are used to answer these questions in a quantifiable
manner.  Experimental structural dynamics techniques can be used to address the
first two questions. To identify the type of damage, data from structures with the
specific types of damage must be available for correlation with the measured
features. Analytical models are usually needed to answer the fourth and fifth
questions unless examples of data are available from the system (or a similar
system) when it exhibits varying damage levels.

Finally, an important part of the statistical model development process is the
testing of these models on actual data to establish the sensitivity of the selected
features to damage and to study the possibility of false indications of damage.  False
indications of damage fall into two categories: 1.) False-positive damage indication
(indication of damage when none is present), and 2). False-negative damage
indications (no indication of damage when damage is present).

SUPERVISED LEARNING: GROUP CLASSIFICATION

Group classification attempts to place the features into respective “undamaged”
or “damaged” categories in a statistically quantifiable manner.   Informally, skilled
individuals can use their experience with previous undamaged and damaged
systems and the changes in the features associated with previously observed
damage cases to deduce the presence, type and level of damage.  This is an example
of informal supervised learning. For example, it is possible to examine acceleration
signals in the frequency or time domain and deduce in some cases, from the
presence and location of peaks, the type, location, and extent of damage of a
rotating machinery component.  As previously cited, extensive tables are
commercially available to facilitate this process.

More formal methods founded in machine learning have been applied to
damage detection. These methods place features into either an undamaged or
damaged categories.  The classification techniques fall into three general categories:
Bayesian classifiers, Kth-nearest neighbor rules, and neural network classifiers [12].
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SUPERVISED LEARNING: REGRESSION ANALYSIS

Another category of statistical modeling that can be employed in the damage
detection process is regression analysis.  Typically, this analysis refers to the
process of correlating data features with particular locations or extents of damage.
The features are mapped to a continuous parameter, such as spatial location or a
remaining-useful-life temporal parameter, as opposed to group classification where
the features correspond to discrete categories such as “damaged” or “undamaged”.
Regression analysis for damage detection requires the availability of features from
the undamaged structure and from the structure at varying damage levels.

UNSUPERVISED LEARNING: DENSITY ESTIMATION

Finally, analysis of outliers is employed when data are not available from a
damaged structure.  This type of analysis attempts to answer the question: When
data from a damaged structure are not available for comparison, do the observed
features indicate a significant change from the previously observed features that can
not be explained by extrapolation of the feature distribution?  Multivariate
probability density function estimation is one of the primary statistical tools
employed in this type of analysis.  A particular difficulty with performing an
analysis of outliers is that as the feature vectors increases in dimension, large
amounts of data are needed to properly define the density function.  Statistical
process control is another means that can be employed to identify outliers.  This
approach has the advantage that it can idenity trends in the data that will allow one
to predict when particular features will become outliers

CONCLUDING COMMENTS

A statistical pattern recognition paradigm for vibration-based structural health
monitoring has been proposed.  To date, all vibration based-damage detection
methods that the authors have reviewed in the technical literature can be described
by this paradigm with the vast majority of this literature focused on the
identification of damage sensitive features.  However, few of these studies apply
statistical pattern recognition procedures to the damage-sensitive features.  This
lack of statistical analysis presents some potential problems for the development of
vibration-based damage detection technology.  As an example, the difficulties
associated with accurately quantifying the statistical distribution of large order
feature vectors are well documented in the statistics literature. However, most
vibration-based damage detection methods discussed in the technical literature do
not address this issue and many do not hesitate to suggest the use of relatively large
feature vectors. A multi-disciplinary approach to the vibration-based damage
detection problem is required to alleviate problems such as the “curse of
dimensionality.”  Such approaches offer the potential to overcome other difficulties
associated with this technology such as widely varying length scales of the damage
relative to that of the structure and the fact that damage can accumulate vary
gradually over multi-year time scales.
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Finally, a web site that is dedicated to vibration-based damage detection and
that contains many of the papers and reports referenced in this study, including
links to other damage detection web sites, is:
http://ext.lanl.gov/projects/damage_id/.
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